ACADEMIA DE ȘTIINȚE A MOLDOVEI

INSTITUTUL DE INGINERIE ELECTRONICĂ ȘI NANOTEHNOLOGII "D.GHITU"

ACADEMY OF SCIENCES OF MOLDOVA

INSTITUTE OF ELECTRONIC ENGINEERING AND NANOTECHNOLOGIES "D.GHITU"

3/3, Academiei str., MD-2028, Chisinau, Rep. of Moldova, tel: (37322) 737092, fax: (37322) 727088 e-mail: directia@nano.asm.md

str. Academiei 3/3, MD-2028, Chişinău, Republica Moldova, tel: (37322) 737092, fax: (37322) 727088 e-mail: directia@nano.asm.md

_11.10.2013	Nr	01/228
la nr.	din	

Генеральному директору ЕООД «Стройпроект» (Болгария) Господину Х. Крушарски

Уважаемый господин Х. Крушарски!

Направляем Вам Акт испытаний пиротехнических льдообразующих составов (ШАД) изделий типа «Loza-2» и гигроскопических составов для вызывания осадков, предоставленных ЕООД «Стройпроект», в соответствии с контрактом №25/12 от 15 декабря 2012 г. между фирмой ЕООД «Стройпроект» (Болгария) и Институтом Электронной Инженерии и Нанотехнологий «Д.Гицу» Академии Наук Молдовы.

Испытания проведены в Лаборатории физики окружающей среды на аэродинамическом стенде, разработанном в институте, по методикам, применяемых для исследований льдообразующих характеристик аэрозолей с помощью облачных камер смешения и разработанной методике для тестирования гигроскопических составов для стимулирования осадков.

Зам. Директор, Доктор A. Precedent

Л.З.Гимпу

Исполнитель: Е.Засавицкий Тел. +373 22 73-71-97

Институт Электронной Инженерии и Нанотехнологий «Д.Гицу» Академии Наук Молдовы

ЛАБОРАТОРНЫЕ ИСПЫТАНИЯ НА ЛЬДООБРАЗУЮЩУЮ АКТИВНОСТЬ ШАД И ГИГРОСКОПИЧЕСКИХ СОСТАВОВ ДЛЯ ВЫЗЫВАНИЯ ОСАДКОВ ИЗДЕЛИЙ ТИПА «ЛОЗА»

Акт испытаний

Кишинев-2013

ОБЪЕКТ ИСПЫТАНИЙ

Испытаниям на льдообразующую активность на аэродинамическом стенде были подвергнуты полномерные ШАД и их образцы изделий типа «Loza-2». Также были проведены испытания генераторов гигроскопических частиц для вызывания осадков.

Пиротехнические композиции ШАД были предоставлены фирмой-производителем ЕООД «Стройпроект» (Болгария) в соответствии с контрактом №25/12 от 15 декабря 2012 г. между фирмой ЕООД «Стройпроект» (Болгария) и Институтом Электронной Инженерии и Нанотехнологий «Д.Гицу» Академии Наук Молдовы.

Результаты испытаний являются основой для заключения об эффективности противоградовых ракет типа «Loza-2», используемых в практике активных воздействий на градовые процессы в Республике Молдова. Также можно сделать качественное заключение об эффективности гигроскопических составов для вызывания осадков в области положительных температур $(+2 \div +10)^0$ C.

МЕТОДИКА ИСПЫТАНИЙ

Испытания ШАД и их образцов проводились по стандартной методике оценки эффективности льдообразующих пиротехнических составов, применяемых для задач активного воздействия, на аэродинамическом стенде по методике, разработанной в Институте Электронной Инженерии и Нанотехнологий «Д.Гицу» АН ${\rm M}^1$. Сжигание испытуемых пиротехнических льдообразующих составов представленных образцов для получения их аэрозоля производилось следующим образом:

- 1. Сжигание полномерного ШАД и формирование испытуемого аэрозоля в горизонтальной аэродинамической трубе (ГАТ) при скорости воздушного потока до 30 м/c.
- 2. Перед введением в облачную камеру смешения пробы аэрозоля выдерживались в аэрозольном кубе при относительной влажности 41-64%. в течение 1,5 минуты.
- 3. В тестовом режиме активация испытуемого аэрозоля в облачной камере проводилась в течение 5-6 минут.

Количественная оценка активных частиц льдообразования аэрозоля ШАД проводилась в облачной камере объемом 1м³ при температурах переохлажденного модельного тумана в диапазоне температур –3 ··· –12°C.

Испытание генераторов гигроскопических частиц для вызывания осадков проводились по разработанной методике, которая проходит в настоящее время практическую апробацию.

Примечание: Образцы ШАД для испытаний на аэродинамическом стенде были представлены заказчиком в виде головных частей противоградовых ракет типа «Loza-2» (1шт.), реагентных палок (4шт.), генераторов льдообразующих аэрозолей (3шт.) и генераторов гигроскопических частиц для вызывания осадков (2шт.) без указания времени изготовления реагента, его типа, условий хранения и принадлежности к определенной партии противоградовых ракет и имели условную нумерацию.

¹ Zasaviţchi E., Şeptiţchi A., Caraghenov D., Kim N., Garaba I., Potapov E. Stand de laborator pentru testarea compoziţiilor pirotehnice antigrindină // Brevet de Invenţie Nr. 3898MD, CIB A01G 15/00; G01M 9/06; G01M 9/02; G01 N 33/22; F42B 15/10; Solicitant Institutul de Inginerie Electronică şi Tehnologii Industriale al Academiei de Ştiinţe a Moldovei, MD; data depozit. – 2008-04-24; a 2008 0115; data publ. – 2009-05.30, BOPI Nr.5/2009. – P.18.

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ

Результаты испытаний представлены в таблицах $\mathbb{N}_{2}\mathbb{N}_{2}$ $1\div9$ в виде величины выхода активных частиц льдообразования с 1 г испытуемых образцов ШАД в диапазоне температур модельного тумана в облачной камере смешения от минус 3 до минус 11^{0} С и в виде фотографии, представляющих распределение капель, полученных при осаждении модельного тумана, до и после введения гигроскопических частиц, полученных при сжигании гигроскорического состава типа "LOZA" (Рис.1-7)

Таблица 1 Результаты исследования выхода частиц льдообразования изделия «Loza») при сжигании полномерного ШАД в аэродинамической трубе при скорости воздушного потока $28\,$ м/с и влажности $(54\div71)\%$.

Температура проведения эксперимента T, °C	Выход льдообразующих частиц ШАД, N, г ⁻¹	Интегральный выход льдообразующих частиц ШАД, N	Средний выход льдообразующих частиц ШАД, $N_{ m cp.}$, Γ^{-1}	Средний интегральный выход льдообразующих частиц ШАД $N_{ m cp.}$
(No	D 12	20 m		
-10,1	$6,85\times10^{12}$ $7,55\times10^{12}$ $1,34\times10^{13}$ $1,22\times10^{13}$	$ \begin{array}{r} 2,7 \times 10^{15} \\ 3,0 \times 10^{15} \\ 5,4 \times 10^{15} \\ 4,9 \times 10^{15} \end{array} $	1,0×10 ¹³	4,0×10 ¹⁵
	(V= (2)	And the second	12D	(و
-9,6	$ \begin{array}{c} 1,21 \times 10^{13} \\ 1,10 \times 10^{13} \\ 2,16 \times 10^{13} \\ 1,96 \times 10^{13} \end{array} $	$4,8\times10^{15}$ $4,4\times10^{15}$ $8,6\times10^{15}$ $7,8\times10^{15}$	1,6×10 ¹³	6,4×10 ¹⁵
(N= (3)	
-9,4	$ \begin{array}{r} 1,05 \times 10^{13} \\ 1,06 \times 10^{13} \\ 1,86 \times 10^{13} \\ 1,89 \times 10^{13} \end{array} $	$4,2\times10^{15}$ $4,2\times10^{15}$ $7,4\times10^{15}$ $7,6\times10^{15}$	1,5×10 ¹³	6,0×10 ¹⁵
	W.	5.	M. G	
-12,0	$1,07\times10^{13} \\ 1,12\times10^{13}$	4,3×10 ¹⁵ 4,5×10 ¹⁵	1,1×10 ¹³	4,4×10 ¹⁵
		Swadow sendor en ea	0	N=6
-9,6	$ \begin{array}{r} 2,16 \times 10^{13} \\ 2,25 \times 10^{13} \\ 3,84 \times 10^{13} \\ 4,00 \times 10^{13} \end{array} $	$8,6\times10^{15}$ $9,0\times10^{15}$ $1,5\times10^{16}$ $1,6\times10^{16}$	3,1×10 ¹³	1,2×10 ¹⁶

Таблица 2 Результаты исследования выхода частиц льдообразования изделия ШАД №1 (29.07.2013, Болгария) при сжигании в лабораторной камере с диафрагмированием ($D_{\text{диафр}}$ = 1мм).

Температура проведения эксперимента, T, ⁰ C	Влажность проведения Эксперимента, %	Выход льдообразующих частиц ШАД, N, г ⁻¹	Интегральный выход льдообразующих частиц ШАД(5 r), $N_{\rm cp.}$, r^{-1}
-12,0	No. 1 63	1,05×10 ¹³	5,25×10 ¹³
-11,0	63.2	1,04×10 ¹³	5,20×10 ¹³
-10,5	65	1,01×10 ¹³	5,05×10 ¹³
-10,0	59	$9,94 \times 10^{12}$	4,97×10 ¹³
-8,0	58	8,67×10 ¹²	4,33×10 ¹³
-6,0	60	7,00×10 ¹²	3,50×10 ¹³
-5,5	57	6,70×10 ¹²	3,35×10 ¹³
-4,0	60	4,13×10 ¹²	2,07×10 ¹³

Таблица 3 Результаты исследования выхода частиц льдообразования изделия ШАД №3 (26.07.2013, Болгария) при сжигании в лабораторной камере с диафрагмированием ($D_{\text{диафp}}$ = 1мм).

Температура проведения эксперимента, T, ⁰ C	Влажность проведения Эксперимента, %	Выход льдообразующих частиц ШАД, <i>N</i> , г ⁻¹	Интегральный выход льдообразующих частиц ШАД(5 r), $N_{\rm cp.}$, r^{-1}
-11,0	61 100 200	1,26×10 ¹³	6,30×10 ¹³
-10,5	61	1,25×10 ¹³	6,25×10 ¹³
-10,0	63	$1,17 \times 10^{13}$	5,85×10 ¹³
-8,8	59	$1,10 \times 10^{13}$	5,50×10 ¹³
-7,8	58	9,64×10 ¹²	4,82×10 ¹³
-5,0	58	5,07×10 ¹²	2,53×10 ¹³
-4,2	54	$2,71 \times 10^{12}$	1,35×10 ¹³
-3,5	56	1,77×10 ¹²	8,87×10 ¹²

Таблица 4 Результаты исследования выхода частиц льдообразования изделия ШАД №4 (29.07.2013, Болгария) при сжигании в лабораторной камере с диафрагмированием ($D_{\text{диафр}}$ = 1мм).

Температура проведения эксперимента, Т, ⁰ С	Влажность проведения Эксперимента, %	Выход льдообразующих частиц ШАД, <i>N</i> , г ⁻¹	Интегральный выход льдообразующих частиц ШАД(5 Γ), $N_{\rm cp.}$, Γ^{-1}
-11,0	76	1,11×10 ¹²	5,53×10 ¹²
-8,8	74	6,96×10 ¹¹	3,48×10 ¹²
-7,3	69	6,17×10 ¹¹	3,08×10 ¹²
-5,8	66	3,70×10 ¹¹	1,85×10 ¹²
-4,3	70	1,69×10 ¹¹	8,47×10 ¹¹

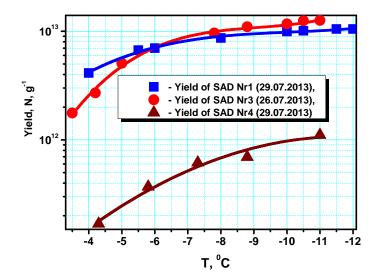


Таблица 5 Результаты исследования выхода частиц льдообразования изделия "Реагентная палка" №1, 125г. (25.07.2013, Болгария) при сжигании в лабораторной камере с диафрагмированием ($D_{\text{диафр}}$ = 1мм).

(Nº 1)	(20:		
Температура проведения эксперимента, Т, ⁰ С	Влажность проведения Эксперимента, %	Выход льдообразующих частиц ШАД, <i>N</i> , г ⁻¹	Интегральный выход льдообразующих частиц ШАД(125 Γ), $N_{\rm cp.}$, Γ^{-1}
-14,0	54	6,57×10 ¹²	8,21×10 ¹⁴
-12,0	49	6,30×10 ¹²	7,88×10 ¹⁴
-9,4	54	5,50×10 ¹²	6,87×10 ¹⁴
-8,0	54	4,89×10 ¹²	6,12×10 ¹⁴
-7,0	58	4,82×10 ¹²	6,03×10 ¹⁴
-4,8	49	1,57×10 ¹²	1,96×10 ¹⁴
-4,0	52	1,24×10 ¹²	1,55×10 ¹⁴

Таблица 6

Временная зависимость выхода льдообразующих частиц образцов пиросостава ШАД реагента Nr.1 (29.07.2013) при сжигании в лабораторной камере с диафрагмированием($T=-10^{0}$ C, влажность – 61%).

Время экспозиции в облачной камере, мин	Выход льдообразующих частиц на 1 г состава при сжигании в камере лабораторного сжигания с диафрагмированием, $D_{\text{диафр}} = 1 \text{мм}, N$ 1.58×10^{12}	Интегральный выход ШАД, N _{интегр}	Приведенное значение выхода, N/N ₂₅ N ₂₅ — значение выхода при экспозиции 25мин
0.5	1.58×10^{12}	7.90×10^{12}	0.17673
1.0	6.55×10 ¹²	3.27×10^{13}	0.73266
1.5	8.37×10^{12}	4.18×10 ¹³	0.93624
2.0	8.89×10^{12}	4.45×10^{13}	0.99441
3.0	8.88×10^{12}	4.44×10^{13}	0.99329
5.0	8.89×10^{12}	4.45×10^{13}	0.99441
7.0	8.92×10^{12}	4.46×10 ¹³	0.99776
10.0	8.92×10 ¹²	4.46×10 ¹³	0.99726
15.0	8.94×10^{12}	4.47×10^{13}	1.00000
20.0	8.92×10 ¹²	4.46×10^{13}	0.99726
25.0	8.94×10^{12}	4.47×10^{13}	1.00000

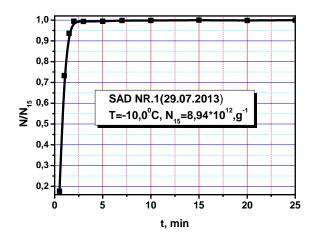
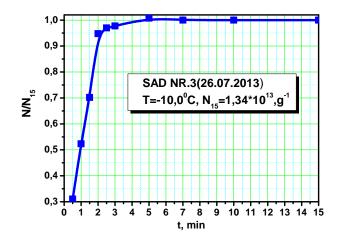



Таблица 7

Временная зависимость выхода льдообразующих частиц образцов пиросостава ШАД реагента Nr.3 (26.07.2013) при сжигании в лабораторной камере с диафрагмированием($T=-10^{0}$ C, влажность – 65%).

Время экспозиции в облачной камере, мин	Выход льдообразующих частиц на 1 г состава при сжигании в камере лабораторного сжигания с диафрагмированием, $D_{\text{диафр}}=1$ мм, N	Интегральный выход ШАД, N _{интегр}	Приведенное значение выхода, N/N ₁₅ N ₁₅ — значение выхода при экспозиции 15мин
0.5	4.16×10^{12}	2.08×10^{13}	0.31045
1.0	7.01×10^{12}	3.50×10^{13}	0.52313
1.5	9.41×10^{12}	4.71×10^{13}	0.70224
2.0	1.27×10 ¹³	6.35×10^{13}	0.94776
2.5	1.30×10 ¹³	6.50×10^{13}	0.97015
3.0	1.31×10^{13}	6.55×10^{13}	0.97761
5.0	1.35×10^{13}	6.77×10^{13}	1.00746
7.0	-1.34×10^{13}	6.69×10^{13}	1.00000
10.0	1.34×10^{13}	6.69×10^{13}	1.00000
15.0	1.34×10^{13}	6.69×10^{13}	1.00000

Временная зависимость выхода льдообразующих частиц образцов пиросостава ШАД реагентной палки Лоза Nr.1(2013) при сжигании в лабораторной камере с диафрагмированием ($T=-10^{0}$ C, влажность – 67%).

(N=1) 128 m				
Время экспозиции в облачной камере, мин	Выход льдообразующих частиц на 1 г состава при сжигании в камере лабораторного сжигания с диафрагмированием,	Интегральный выход ШАД, N _{интегр}	Приведенное значение выхода, N/N ₁₅ N ₁₅ — значение выхода при	
0.5	$\mathbf{D}_{\text{диафр}} = 1 \mathbf{м} \mathbf{M}, \mathbf{N}$ 2.52×10^{12}	3.15×10 ¹⁴	экспозиции 15 мин 0.33600	
1.0	4.09×10^{12}	5.11×10^{14}	0.54533	
1.5	7.38×10 ¹²	9.22×10 ¹⁴	0.98400	
2.0	7.43×10^{12}	9.29×10 ¹⁴	0.99067	
2.5	7.44×10^{12}	9.30×10^{14}	0.99200	
3.0	7.45×10^{12}	9.31×10^{14}	0.99333	
4.0	7.48×10^{12}	9.35×10^{14}	0.99733	
7.0	7.50×10 ¹²	9.37×10^{14}	1.00000	
10.0	7.49×10^{12}	9.36×10 ¹⁴	0.99867	
15.0	7.50×10^{12}	9.37×10 ¹⁴	1.00000	

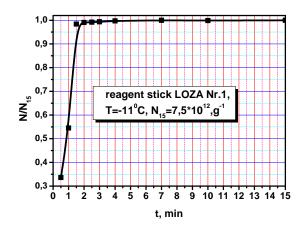


Таблица 9 Временная зависимость выхода льдообразующих частиц образцов пиросостава ШАД головной части ракеты Лоза-2, Nr.6(2013) ($T=-10,5^0$ C, влажность -46%).

			Nº 6
Время экспозиции в облачной камере, мин	Выход льдообразующих частиц на 1 г состава при сжигании в камере лабораторного сжигания с диафрагмированием, $D_{\text{диафр}}=1$ мм, N	Интегральный выход ШАД, N _{интегр}	Приведенное значение выхода, N/N ₁₅ N ₁₅ — значение выхода при экспозиции 15мин
0.5	5.39×10^{12}	2.16×10 ¹⁵	0.48559
1.0	6.87×10 ¹²	2.75×10 ¹⁵	0.61892
1.5	1.06×10^{13}	4.24×10 ¹⁵	0.95495
2.0	1.09×10^{13}	4.36×10^{15}	0.98198
2.5	1.10×10^{13}	4.40×10 ¹⁵	0.99099
3.0	1.10×10 ¹³	4.40×10 ¹⁵	0.99099
4.0	1.10×10 ¹³	4.40×10 ¹⁵	0.99099
7.0	1.10×10 ¹³	4.40×10 ¹⁵	0.99099
10.0	1.11×10 ¹³	4.43×10 ¹⁵	1.00000
15.0	1.11×10 ¹³	4.43×10^{15}	1.00000

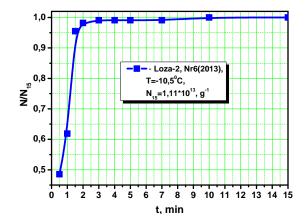
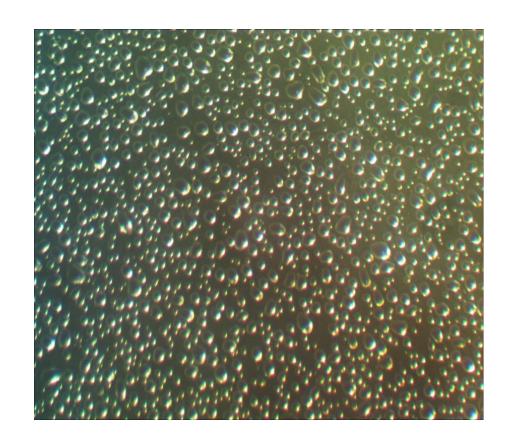



Рис.1 ШАД Nr2(29.07.2013)

Рис.2 ШАД Nr5(25.07.2013)

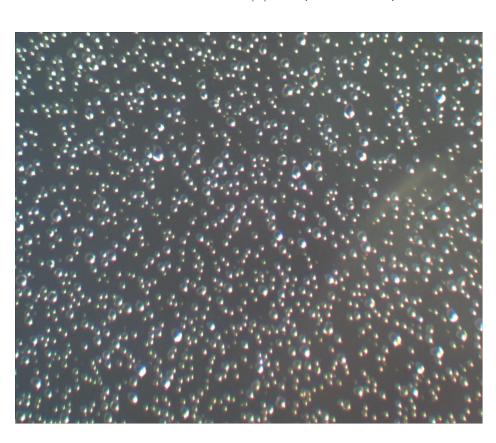
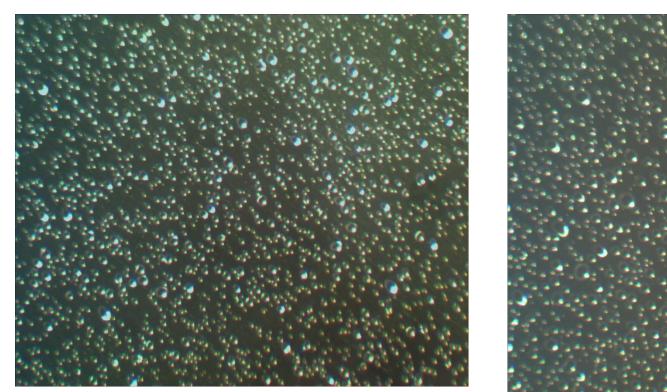



Рис.3 Без реагента

Рис.4 Без реагента

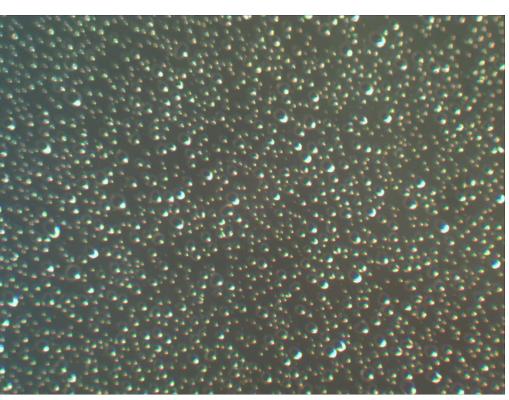


Рис.5 Без реагента

Зав. лаб. физики окружающей среды

Ведущий инженер

Лаборант

Д.И. Карагенов

А.Ю.Шептицкий